Toward Reliable Prediction of the Energy Ladder in Multichromophoric Systems: A Benchmark Study on the FMO Light-Harvesting Complex

DATE

N. H. List, C. Curutchet, S. Knecht, B. Mennucci, J. Kongsted

J. Chem. Theory Comput. 2013, 9, 4928

Abstract

We present an evaluation of the performance of various single-reference QM methods for the prediction of the relative site energies and transition moments of the Q bands in the bacteriochlorophyll a (BChl a) pigments of the Fenna–Matthew–Olson (FMO) complex. We examine the relative merits of ZINDO, CIS, TD-DFT (with the functionals PBE, BLYP, PBE0, B3LYP, and CAM-B3LYP) and RI-CC2 in reproducing the variations across the pigments that occur as a consequence of geometrical and electrostatic effects of the FMO complex by comparison to DFT-BHLYP/MRCI. We find that these pigments are near-multiconfigurational in nature and, thus, constitute critical cases for the RI-CC2 method. The commonly used ZINDO method is fairly reliable for the site energies of the isolated pigments; however, it overestimates the coupling to the environment, thereby leading to variations across the embedded pigments that are too drastic. The overall best performance is provided by the investigated TD-DFT methods, where PBE0 is found to be slightly superior to the other functionals tested.